

TOPCONS

Marine spatial planning tool for the conservation of marine ecosystems in the eastern Gulf of Finland

Miina Karjalainen
Kotka Maritime Research Centre

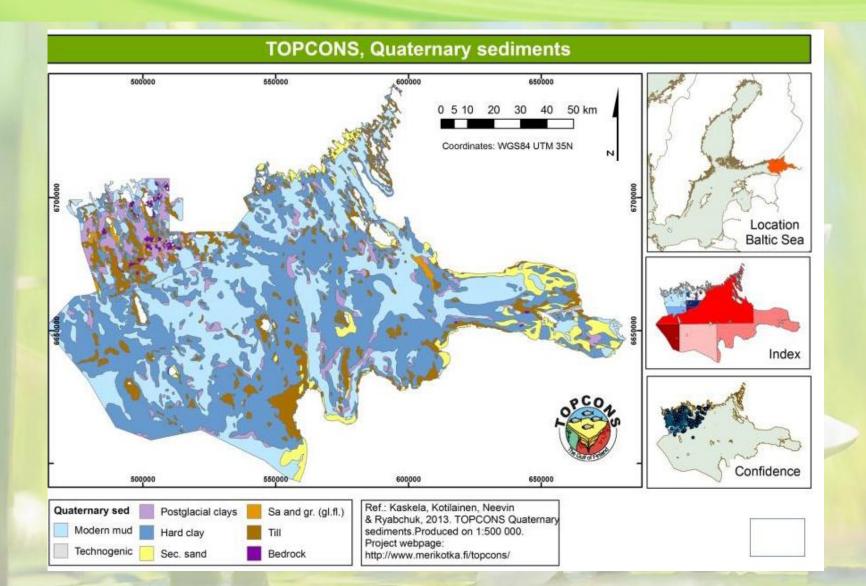
Riikka Venesjärvi
Mirka Laurila-Pant
University of Helsinki, Fisheries and
Environmental Management Group

Other TOPCONS partners

TOPCONS

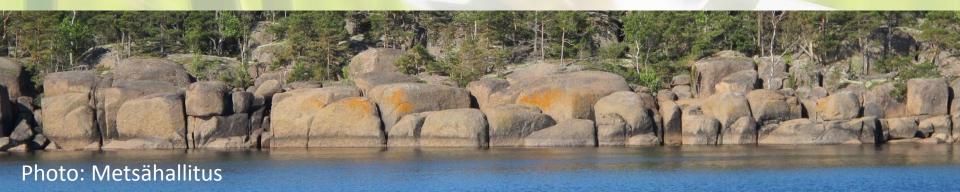
Transboundary tools for spatial planning and conservation of the Gulf of Finland - TOPCONS

"To create and test a prototype GIS-based tool for marine spatial planning."



TOPCONS approach

- Developing efficient measures to protect marine ecosystems requires interdisciplinary approach
- Ecological knowledge needs to be integrated with information about human pressures
- Interactive and clever technical solutions aid in interpreting the accumulated knowledge
- Knowledge should be communicated to the stakeholders



Project area

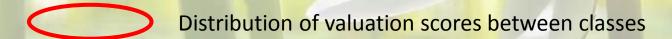
Datasets for the tool

- Existing, available datasets (geology, biology, hydrography) & new data collected
- Modelled data about key species, birds and fish
- Information about the human pressures (location, effects to environmental parametes)
- Stakeholder valuations from questionnaires and interviews

Human pressures chosen for the tool

Increase of oil transportation	Offshore wind power	Dredging and dumping	Cooling waters of power plants	Fish farming
Oil spills	Disturbance	Extraction	Thermal change	Nutrients
Underwater noise	Underwater noise	Smothering		Organic matter
Siltation		Siltation		
		Abrasion		

Data collected from literature, expert interviews and modelling

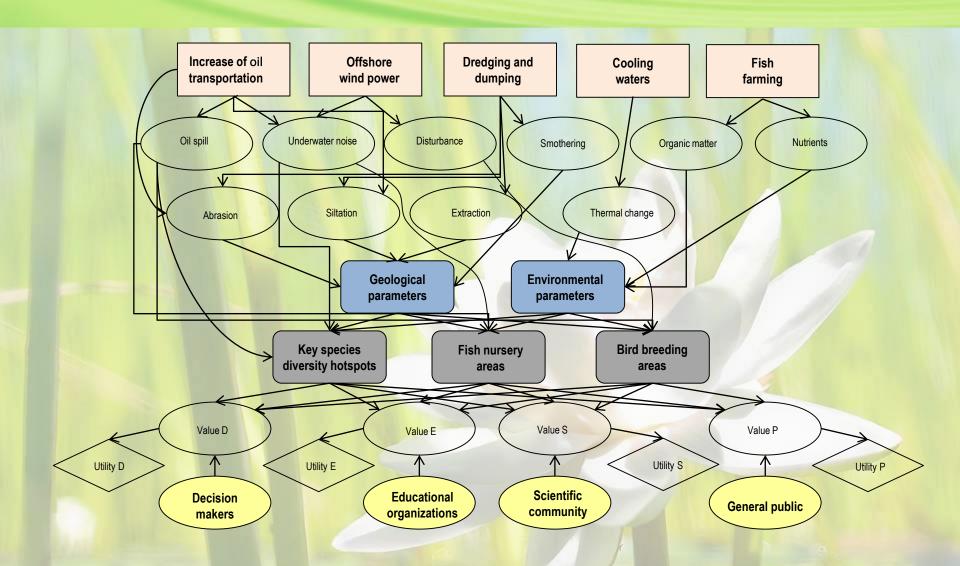

Stakeholder valuations

Valuations to be collected by interviews from 4 stakeholder groups

Value Keyspecies Stakeholders U1 Keyspecies Value Threatened species								
Keyspecie:	S	Yes						
Stakeholder	rs	Researchers	Educa	tional	DM	Public		
0	0		0	0	0			
1	0		0.3	0.2	0.1			
2	0.	1	0.3	0.4	0.2	!		
3	0.	5	0.4	0.3	0.4	1		
4	0.	4	0	0.1	0.3	1		
5	0		0	0	0			
					•			

Stakeholder groups: researchers, educational organizations, decision makers, general public

Valuation classes from 0 to 5

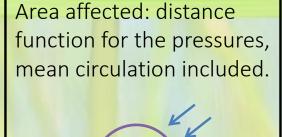


Combining the datasets

Bayesian Networks

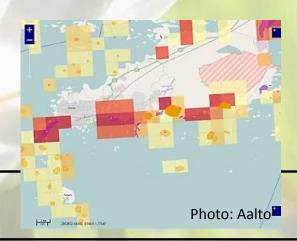
- Models that consist of variables relevant to the problem
- Provide a quantitative means to study alternative decisions in the presence of multiple aims
- Transparent and consistent method for inductive inference
- Use probability as the measure of belief and calculate the process
- Updating the model is easy with new observations

BBN model structure



How will the tool work?

Species
occurrences
prediction without
human pressure.


BBN: assessing the impacts of human pressures on species. Risk analysis, measured as loss.

Rasterization of the data (grid 100 x 100 m)

Raster algebra: risk calculation for each of the grids

Graphical GIS interface: impacts to species occurrences after disposition of human activities

First version of the tool will include

- Pre-selected human activities and their pressures
- Geological and hydrographical parameters defining the species distribution
- Probability of species distribution in the study area
- Changes in species presence/absence due to human pressures
- Location of protected areas and viewing possibility for original GIS and metadata sheets
- Stakeholder valuations of 4 groups transparent to planners

Photo: KMRA

What could be included in the next versions?

- Now only species presence/absence data, possible to include abundance
- Recovery of the species after short term disturbance
- More human activities and their pressures
- Socio-economical valuation of the areas
- Effects from the activities taking place in the drainage area
- Applicable to other areas as well, with suitable backgroud datasets

More information:

Riikka Venesjärvi +358 50 4150 609

riikka.venesjarvi@helsinki.fi

http://www.helsinki.fi/science/fem

TOPCONS

http://www.merikotka.fi/topcons/

Final seminar in Helsinki, FI on 25 November 2014!

