

The (missing) rurban Link – towards resilient and sustainable ruralurban systems

Environmental accounting of...

...sustainable (urban) development

Daniel Bergquist, PhD/Researcher Swedish University of Agricultural Sciences (SLU) <u>daniel.bergquist@slu.se</u>

Researcher in landscape architecture and urban planning

- PhD from Uppsala university 2008, Applied Environmental Impact Assessment
- Interdisciplinary background in sustainable development; geography and systems ecology – <u>environmental accounting</u>

Department of urban and rural development (Stad och Land) Various aspects of sustainable urban-rural development:

- Landscape architecture (and spatial/urban planning)
- Rural development
- Environmental communication
- Agrarian history

Ongoing work

Systems landscapes: a critical systems approach to urban sustainability (**SysLa**) Formas, 2016-2018, <u>www.slu.se/systemlandskap</u>

SYSLAB: a virtual SYStemsLAndscapeLABoratory Vinnova, SLU Holding etc, 2014- <u>www.slu.se/systemanalys</u>

Green Innovation Park: Innovation, entrepreneurship and campus development for a sustainable future

http://greeninnovationpark.se/

Central concepts

A <u>system</u> is a group of parts which are connected and work together...

Resilient and Sustainable Rurban Systems

... structures, processes, functions, and relations in urban and rural landscapes support each other – intentional and *mutually reinforcing* ("smart") connections at multiple scales

Central concepts

System(s) landscapes – theoretical frame where we study urban areas as...

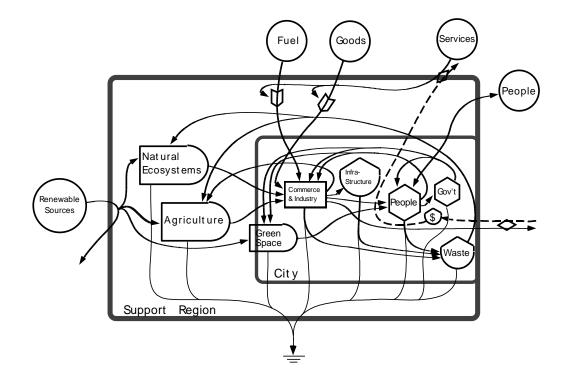
...embedded sub-systems with both direct and indirect linkages to biophysical and socio-economic resources and processes at multiple scales

"societal metabolism"
holistic systems thinking

Central concepts

Emergy

The sum of all different forms of energy used up directly and indirectly to make a product or service


- Sometimes called Energy Memory = Emergy
- Expressed in energy of the same FORM ... usually solar energy (equivalents)
- Units = Solar Emergy Joules = sej

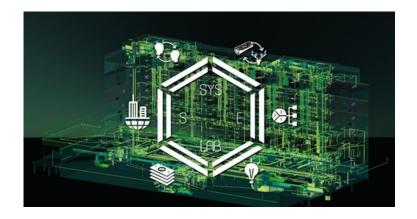
Emergy enables comparison of "apples and pears" – to identify what really matters for sustainability

EMERGY

Challenge: Get from scientific versions...

Note	e Item	Unit	Data (units/yr)	Unit Solar Emergy (SeJ/unit)	Emergy	Em\$ Value (2000 \$/yr)
DE	NEWABLE RESOU	DCES				
1	Sun	KCES I	4.71E+13	1	4,71	25,48
2	Rain	Ţ	5.38E+10	3.02E+04		881
3	Estuarine waters	J	1.98E+11	2,59E+04		2779
5	Sum of free inputs (a			2,002.04	676	3661
PUI	RCHASED INPUTS					
4	Fuel	J	1,16E+11	1,11E+05	1284	6946
5	Feed	J	3,10E+11	2,20E+05	6826	36940
6	Labour	J	3,35E+09	4,40E+06	1477	7991
7	Lime	g	2,00E+06	1,68E+09	336	1818
8	Nitrogen	g N	1,67E+05	7,04E+09	117	635
9	Machinery	g	1,53E+04	1,13E+10	17	93
10	Phosphate	g P	3,33E+03	3,36E+10	11	61
11	Shrimp post larvae	ind	3,00E+05	1,75E+11	5242	28364
12	Services	\$	2,26E+04	1,85E+12	4171	22572
	Sum of purchased in	puts			19482	105419
	Total emergy				20158	109080
TR	ANSFORMITIES, C	alcula	ted			-
13	Yield, ha/yr	\$	12758	1,58E+13	SeJ/\$	
		J	2,49E+10	8,11E+06	SeJ/J	
	DICES, calculated					
	e Name of Index		Expre	ssion	Quantity	
14	Investment ratio		F/R		29	
15	Yield Ratio		Y/F		1,03	
16	<i>c, c</i>		×	6,28E+24		
17	% Renewable			· ·	19	
18			SeJ/ha		2,0E+17	
19	Environmental loa		/R	33,8		
20	Emergy sustainabi	lity ind	lex EYR/	FID	0.03	

...to something that anyone can understand and make use of

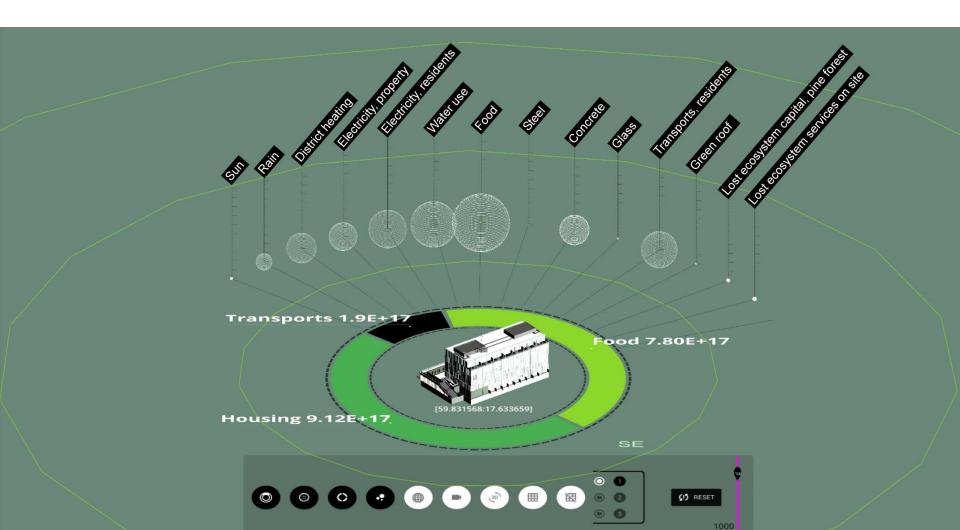


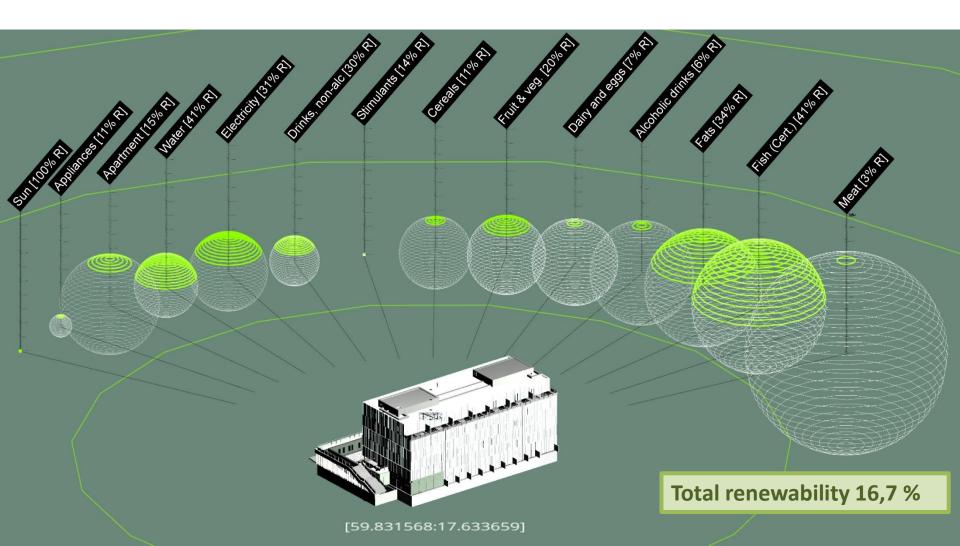
"How can we know how sustainable our cities are when we don't know what it means, and don't have the tools to asses it?"

Ingolf Schädler, Deputy director general for innovation JPI Urban Europe, Brussels, October 2015

Emergy enables comparison of "apples and pears" – to identify what really matters for sustainability

SYSLAB: a virtual SYStemsLAndscapeLABoratory


Examples from emergy based research and innovation


First trial case: Smaragden, Rosendal

Conclusions/highlights

- The contribution (resource support) by rural areas to urban areas is substantial
- Renewability/sustainability of urban systems is primarily dependent on activities outside of the urban area (of influence?)
- Food is a concrete example at the intersection of the urban and the rural (interdependency) – potential for integrated development and policy

How do we create rurban relations that simultaneously enhance rural and urban systems (reciprocity)?

Examples of other projects with urban-rural perspectives:

- CityLands reciprocal co-evolution for urban and rural areas
- Regional Food Supply Strategies
- Local food systems perspectives of Swedish municipalities
- Urban Agriculture
- Crowd Funding (urban dwellers invest in rural business)
- Migration and integration with global rural-urban connections

Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences

Thank you for your attention!

Contact:

Daniel Bergquist, PhD

Swedish University of Agricultural Sciences (SLU), Department of Urban and Rural Development Phone: +46 18 67 25 76 | Mobile: +46(0)70-754 29 09

daniel.bergquist@slu.se, www.slu.se/bergquist, www.slu.se/systemlandskap